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The direct simulation Monte Carlo method is extended to cover molecular dissociation 
and recombination reactions. The model also includes internal degrees of freedom with 
separate relaxation times for rotation and vibration. The model is based on a classical 
collision theory analysis that provides an expression for the equilibrium state and allows the 
appropriate simulation parameters to be inferred from thermodynamic data for real gases. 
The model is tirst tested by the computation of the constant volume relaxation of a homogen- 
eous gas sample. A tinite difference procedure is then used to extend this program to cover 
the dissociation relaxation zone behind strong normal shock waves. A number of nitrogen 
cases are computed and the results are in agreement with existing experimental data. 

1. INTRODUCTION 

The direct simulation Monte Carlo method [I, Chaps. 7-l l] is a technique for the 
computer modeling of a gas flow by some thousands of simulated molecules. The 
velocity components and position coordinates of these molecules are stored in the 
computer and are modified with time as the molecules are concurrently followed 
through representative collisions and boundary interactions in simulated physical 
space. The existing applications range from homogeneous simple monatomic gas 
relaxation studies, to multidimensional flows of mixtures of gases with internal 
degrees of freedom. 

A collision theory analysis of the dissociation-recombination reaction that is 
compatible with the direct simulation Monte Carlo method has recently been devel- 
oped [l, Chap. 121. This analytical model incorporates the standard collision theory 
result for the dissociation reaction rate and leads to an expression for the equilibrium 
state that is identical in form to the law of mass action. If a particular diatomic gas is 
to be simulated, a comparison of the theoretical and experimental dissociation rates 
gives the appropriate value of the reactive cross section, while the corresponding 
comparison for the equilibrium degree of dissociation provides the effective binary 
collision lifetime parameter. 
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The purpose of the present paper is to present an extension to the theory and to 
demonstrate its application to a particular reacting gas flow. The extension permits a 
more realistic relationship between the elastic and reactive cross sections and removes 
a restriction on the allowable ratio of the forward and backward reaction rate 
constants. Nitrogen has been chosen as the test gas and the relaxation zone behind 
a strong normal shock wave serves as the demonstration flow. This flow has been 
widely studied in shock tube experiments that have provided much of the existing 
data on dissociation and recombination reaction rates in diatomic gases. 

2. DIATOMIC GAS MODEL 

2.1. Translational Scattering 

The first choice that must be made relates to the basic scattering model. The inverse 
power law model is the most convenient because the deflection angle depends on a 
single parameter. The exponent of the power law may be chosen to match the 
temperature dependence of the coefficient of viscosity to that of the gas being modeled. 
The flows under consideration here are, however, quite insensitive to this parameter 
and advantage has been taken of the computational simplicity of the limiting case 
of the hard sphere model. This has a fixed total collision cross section cr. 

2.2. Rotational and Vibrational Modes 

The phenomenological models that are described in [l, Sect. 11.31 may be applied 
to any of the inverse power law models. The Larsen-Borgnakke model [3] must be 
chosen over the energy sink model for a reacting gas, since it is essential that the high 
speed tail of the translational distribution function should not be distorted. Previous 
applications of this method have been restricted to a simple gas with a fixed number of 
internal degrees of freedom and a single relaxation time. For this study, the model 
must be extended to cover a mixture of atoms and molecules and to include the 
partially excited vibrational mode with a separate relaxation time to that for the 
rotational mode. 

The harmonic oscillator approximation may be used to determine the equivalent 
(noninteger) number of degrees of freedom of vibration. The specific internal energy ev 
associated with the vibrational energy is then [2, p. 1351 

e V= R@,/[exp(@v/T) - 11, (1) 

where R is the gas constant, T is the temperature, and 0, is the characteristic temper- 
ature for vibration. Equipartition requires each fully excited degree of freedom to 
contain energy +RT, so that the “equivalent number of degrees of freedom” corre- 
sponding to the vibrational energy is 

5” = 2(@v/T)l[ew(@~/T) - 11. (2) 
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The relaxation time in the Larsen-Borgnakke method is adjusted by setting varying 
proportions of elastic and inelastic collisions. In the present case, the rotational 
relaxation rate was set by the specification of the fraction gr of collisions with energy 
interchange to two degrees of freedom and the vibrational relaxation rate by setting 
the fraction gV of these in which the effective number of degrees of freedom 5: is 
increased to 2 + [v . 

The rotational and vibrational energies are stored separately for each molecule and 
the internal energy El in a collision is equal to the sum of the individual rotational 
energies when t: = 2 and to the sum of the rotational and vibrational energies when 
&’ = 2 + [v . The total energy EC in a collision is equal to the sum of Ei and the 
translational energy Et = &mrcr2, where m, is the reduced mass and cr is the relative 
speed. The total energy EC is conserved in the collision, and the postcollision trans- 
lational energy is sampled from the appropriate distribution function [I, Eq. (11.22)]. 
The acceptance-rejection method is used for this sampling and the ratio of the 
probability of a particular value of Et* to the maximum probability is 

(SEt*IEd[(l - Et*/&)l(l - W’)lc-‘. 

The postcollision internal energy El* is then given by EC - Et* and the distribution 
function [l, Eq. (11.24)] for the assignment of internal energy l 1 , to the first of the 
two molecules leads to the probability ratio, 

2~-“[(~i,l/Ei>(l - Ei*JEi)]C/“-1. (4) 

The second molecule is, of course, assigned the internal energy ~i,~ = El - ~1,~ . 
Note that the latter distribution is uniform when 5 = 2. 

The Larsen-Borgnakke method is readily extended to the rearrangement of the 
translational and internal energies of a molecule in collision with an atom. The 
probability ratio corresponding to Eq. (3) is 

W)(Et*/Ec)[l - Et*/E,)/(l - 2/5)]t/“-‘, 

and there is no longer any need for Eq. (4). 

2.3. Dissociation and Recombination 

The “simulation compatible” collision theory [l, Chap. 121 employs a reactive 
cross section uR defined by 

UR = 0 for &rrcr’ < Ea , 

(SRC(TO 1-2E” 
(6) 

( mrcr’ H 
mrcr’ -- 
2-G 

lji for &rcr2 > Ea , 

where E& is the activation energy of the reaction and CT,, is a reference cross section. 
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For j = 0 and hard sphere molecules, this reactive cross section is consistent with a 
steric factor of a,,/~ and with the translational energy based on the relative velocity 
along the line of centers. The minimum usable value of j is - 1 and, as $mrcr2 -+ Ea , 
this case corresponds to a steric factor of a,,/~ and unrestricted relative energy. 
Positive values of j yield a “line of centers” cross section that increases with the 
margin between the relative translational energy and the activation energy. 

Separate reference cross sections must be applied to molecule-molecule, molecule- 
atom, and atom-atom collisions. These are denoted by u~,MM , u~,MA , and u,,~* , 
respectively. Similarly, the number density n and mass m of the atoms and molecules 
are distinguished by the single subscripts A and M. The rate of loss of molecules 
due to dissociation reactions with an energy of dissociation Ed is [l, Eq. (12.13)] 

dnM 8kT II2 --= 
dt !PM(OO.MMG + @“~~,MA~.J ___ i 1 TmA 

X W + 2) (gj’ exp (- -+$j, 

where t is time, k is the Boltzmann constant, and r(x) is the gamma function. The 
dissociation rate coefficients kd, and k d, for the molecule-molecule and molecule- 
atom collisions can then be written 

ka, = hr(j + 2) ~U,,MM (s,“” (g,i exp (- +$-j 

and 

kd, = (61’2%.id~o.MM)kdM. 

Avogadro’s number JV has been included to convert from molecule numbers to 
moles. 

Recombination is a ternary reaction that requires the consideration of triple or 
three-body collisions. This is most conveniently done by assigning a “lifetime” to a 
binary collision and then regarding the triple collision as a second binary collision 
between the pair of particles in the binary collision and a third particle. The collision 
lifetime of an atom-molecule is assumed to have the form 

112 
at,,MuAM lcr 2 

where atAM is a nondimensional collision time parameter and UAM is the total (elastic) 
collision cross section for an atom-molecule collision. Recombination is assumed to 
occur at each triple collision involving at least two atoms, so that the a, parameters 
effectively express the recombination probabilities. The elastic cross section for the 
collision of this pair with another atom is denoted by UA(AM) . The extension of the 
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subscript notation to the other types of collision is obvious. The rate of formtaion of 
molecules is then [l, Eq. (12.14)] 

d&t -= 
dt nA2[nM{~at,AAaM(AA)u~~ + (2/3”2) %AMu.A(AMdii) 

+ (8 (10) 

In equilibrium, the rate of loss of molecules given by Eq. (9) must be balanced by 
the corresponding rate of gain given by Eq. (lo), and the two equations may be 
equated. A number of sets of relationships between the collision cross sections and 
lifetimes exist such that the resulting expression corresponds exactly with the law 
of mass action. The set given earlier [I, Eq. (12.15)] requires that $, should be twice 
kd, . The following set replaces this constant factor of 2 by the arbrtrary parameter I; 

UO,MM = 161&70,~~ = UO, 

(11) 

and 

aA = uM(AA) = (1/2>@)“2 uAA(AA) = *AA . 

The equilibrium condition remains [l, Eq. (12.1 S)] 

where p is the density and 01 = nAmA/p is the degree of dissociation. 
Each time a binary elastic collision involving at least one molecule is computed, 

the relevant reactive cross section is calculated from Eq. (6), and the ratio of this to 
the elastic cross section gives the probability of a dissociation. The standard accep- 
tance-rejection method is then used to decide whether the dissociation actually occurs. 
The dissociation energy is removed from the collision pair, partly from the trans- 
lational mode through a reduction in the postcollision relative speed and partly from 
the internal modes. The remaining energy of the molecule that dissociates is then put 
into the translational relative energy of the two resulting atoms. The overall momen- 
tum, as well as energy, is conserved in the reaction. 

More extensive extensions of the standard simulation procedures are required to 
deal with the triple collisions. Just as separate time counting parameters are used for 
each of the four classes of collision in a binary gas mixture [l, Sect. 10.21, eight time 
parameters may be specified for the triple collision classes. Four of these classes 
involve two atoms and may therefore give rise to recombinations. The increment 
to these time counters at each recombination is generally a very large multiple of the 
basic time interval At, over which the molecular motion and collisions are uncoupled 
and care must be taken to prevent distortions in the collision rate. The time counters 



358 '3. A. BIRD 

are initialized by setting them to a random fraction of the first possible recombination 
and the computation of this collision is not proceeded with further. The time increment 
is inversely proportional to the product of three number densities corresponding to 
the molecules involved and to the cross section, which may be proportional to some 
power of the temperature. Since these may change significantly during the average 
triple collision time increment, the macroscopic properties at the previous collision 
are stored and the excess time in the triple collision time counters is modified at each 
At,, to allow for these changes. When a recombination is computed, the precollision 
center of mass velocity of the three particles is calculated and is retained as the center 
of mass velocity of the two postcollision particles. The recombination energy is added 
to the precollision translational energy and the total energy is divided between the 
two postcollision particles on the assumption that the direction of the postcollision 
relative velocity may be chosen at random. This effectively assumes hard sphere 
collision mechanics for the triple collision. 

3. CONSTANT VOLUME RELAXATION 

The initial test of the real diatomic gas simulation model has been made in a 
simulation program for the relaxation to equilibrium of a spatially homogeneous 
gas with all its energy initially in the translational mode. Given a set of molecular 
parameters, and the final equilibrium temperature T, the specific internal energy of 
the gas is 

(13) 

The initial temperature of the gas is, therefore, (2/3)(m,/k)e. 
Temperatures are normalized by dividing them by the final equilibrium temper- 

ature, masses by the mass of an atom, distances by the mean free path in the initial 
(molecular) gas, and velocities by the most probable speed of an atom at the final 
temperature. The actual number of simulated molecules is set as data and the density p 
is most conveniently specified by also setting the number of molecules within one 
cubic mean free path. The other quantities that determine the composition of the gas 
are the ratio of uO to (SAA , the parameter at,,, the index j, and the dissociation energy 
Ed . In addition, the fractions gr and gV that control the rotational and vibrational 
relaxation rates must be input as data, together with the time interval At, . The 
program also makes provision for setting an activation energy Ea less than the 
dissociation energy. It is envisaged that Ea would be set sufficiently close to Ed 
that the energy difference would almost always be available in the internal modes of 
the collision partners. 

The program was tested over a wide range of input variables for an initial 500 
molecules. It was found always to lead to the final temperature predicted by Eq. (13), 
with the rotational and vibrational modes in equilibrium with the translational mode, 
and with the degree of dissociation predicted by Eq. (12). 
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For gases such as oxygen and nitrogen, it has been shown [3] that Eq. (12) can be 
written 

a”/(1 - a) = @d/p) eXp(--d/kT), (14) 

where pd , the characteristic density of dissociation, is very nearly constant over the 
temperature range 1000 to 7000 K. The suggested values of pd for oxygen and 
nitrogen are 150 and 130 g cm-3. For our classical model, 

pd = %uor(j + 2)(kT/Ed)i/(4a,,,,o~~) (1% 

and, for nitrogen, mA is 2.325 x 1O-23 g and u AA is 2.83 x lo-l5 cm2 when based on a 
nitrogen molecule diameter of 3.78 x 1O-8 cm, with both the atom and molecule 
being regarded as equal density spheres. Then, for j = 0 and u,, equal to (TAA , we 
find that the recombination probability parameter atAA is very nearly equal to 0.0003. 
This may be taken as a typical value and shows that recombinations are very rare 
events in comparison with elastic collisions. 

The above order of magnitude study is consistent with the experimental finding that 
the width of the relaxation zone behind shock wave is of the order of thousands of 
mean free paths. This means that it is computationally impractical to apply the direct 
simulation Monte Carlo method to the complete one-dimensional shock wave 
formation flow in a similar manner to the existing calculations for nonreacting 
gases [5]. The alternative is to take advantage of the fact that the translational and 
rotational shock thickness is very small in comparison with the relaxation zone in 
which these modes are in local thermodynamic equilibrium. The relaxation zone may 
then be computed by a homogeneous gas calculation similar to that described above. 
The final equilibrium conditions again supply the reference state with the initial 
conditions corresponding to a gas in translational and rotational equilibrium, but 
with zero vibrational excitation and degree of dissociation. The variation of the density 
and velocity and the modification of the constant volume temperature profile may be 
determined in a parallel finite difference calculation that is directly coupled to the 
simulation. 

TRANSLATIONAL VIBRATIONAL 
AND ROTATIONAL 
SHOCK WAVE 
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u P 
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a 

FIG. 1. Assumed physical Model for the shock wave. 
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4. THEORY FOR THE SHOCK RELAXATION ZONE 

The flow model is shown in Fig. 1. The upstream conditions are denoted by the 
subscript 1, the conditions behind the translational and rotational shock wave by 
subscript 2, and the final equilibrium values are unsubscripted. The initial conditions 
for the Monte Carlo simulation are provided by the subscript 2 gas and the first task 
is to relate these to the final equilibrium state which serves as the reference state. 

The equations of continuity, momentum, energy, and state are, respectively, 

and 

PlUl = PZU, = P”, 

Pl + PA2 = P2 + p2u22 = p + pu2, 

el + plIpl + 8u12 = e2 + p21p2 + %u2” = e + p/p + iu2 = ho , 

(16) 

(17) 

(18) 

P&TI) = p21(p2T2) = p/K1 + a) pTl = k/m, , (19) 

where p is the pressure, u is the flow velocity, and h, is the total enthalpy. 
The initial internal energy is e2 = +RT, and the equilibrium energy e is given by 

Eq. (13). The result for the density is 

;:I = p [A (A + 1) f 1; (A + 1)2 - ; (5 + A + ;)/1’2]-1, (20) 

where A = (1 + a)kT/(2m,u2). The solution with the negative sign for p2 gives the 
required initial state, while the solution with the positive sign for p1 applies to the 
complete jump. The initial velocity follows directly from Eq. (16), while the initial 
temperature is 

T, = +[(2m,/k)(e + *u2 - &u2”) + (1 + a)rl. (21) 

For the calculation of the relaxation process, the gas may be regarded as a mixture 
of a diatomic gas with just two fully excited degrees of freedom and a monotamic gas. 
The excitation of the vibrational mode and the dissociations remove specific heat q 
from this gas and change its relative composition. The appropriate differential 
conservation and state equations are 

2nt,u2 du 
(1 + LX) kT u = ” 
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and 
dp dp dT ------ 41 + 4 = o 
p p T l+a ’ 
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These equations lead to the following difference equations for the temperature, 
velocity, and density; 

AT Aq -= 
T [( - - y &) (1 - 4-1 - &]/[I + ;I+3;) A (1 - $1 (26) u-2 

and 
AU -= Ag (7 + 344 AT 3~ Aol Ap --- ----. 
24 P 242 31 + a) T 2 1+a (27) 

5. COMPUTATION OF THE SHOCK RELAXATION ZONE 

The analysis of Section 4 permits the dissociation relaxation zone behind a normal 
shock wave to be computed by a straightforward extension of the constant volume 
relaxation program that was described in Section 3. It is assumed that experimental 
results and/or equilibrium calculations are available for the definition of the down- 
stream equilibrium gas state. These downstream conditions provide the reference 
quantities and Eqs. (20), (21), and (16) are used to determine the initial conditions for 
the computation. A check on the adequacy of the diatomic gas model may be made 
at this stage, in that experimental degree of dissociation may be compared with the 
value predicted by Eq. (12). 

The following steps are then repeated for each incremental time interval At, . 

(i) The collisions, including dissociations and recombinations, appropriate 
to a constant volume relaxation over this time interval are computed as described in 
Section 3. The change in the degree of dissociation ACX and the heat loss Aq from the 
translational and rotational modes due to dissociation, recombination, and vibrational 
excitation are sampled during this process. 

(ii) Equation (26) is used to compute the value of AT corresponding to the 
values of Aar and Aq from the simulation. The resulting temperature differs from that 
obtained from the simulation. Appropriate adjustment is made to all the molecular 
thermal velocities and rotational energies to enforce the temperature change from 
Eq. (26). The flow velocity and density increments Au and Ap are calculated from 
Eq. (27) and these quantities are adjusted accordingly. 

(iii) The direct first-order differencing procedure can be expected to lead to 
some systematic error and this is monitored by checking the progressive value of the 
total enthalpy h, . Should this ditfer from the initial value, half the difference is 
“fed back” as an additional change in the molecular velocities and rotational energies. 
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This has been found to keep the total enthalpy constant to within a small fraction of 
1% over thousands of time increments, with a similar error in the final downstream 
equilibrium conditions. 

(iv) The increment dx in the distance x behind the translational and rotational 
shock front is equal to u d t, . 

6. RESULTS FOR NITROGEN 

Kewley and Hornung [6] have reported nitrogen dissociation rates based on time- 
resolved optical inferferometry of the relaxation region behind a shick wave. The rate 
constant for molecule-molecule collisions over the temperature range 6000-14,000 K 
was found to be 

kdM = 2.3 x 102sT-3J exp(-113, 200/T) (28) 

cm3 mole-l set-l. A comparison of this equation with Eq. (8), keeping in mind that 
the minimum allowable value of j is - 1, shows that this temperature exponent 
cannot be matched if CJO,MM is regarded as a constant. The alternative is to set u~,MM 
in proportion to some power of temperature. This same power law dependence may 
also be applied to u~,MM so as not to disturb the functional form of the equilibrium 
condition, defined by Eq. (12). At 7715 K, this leads to (T,,MM equal to 0.8430MM for 
j = -1, and 12.4aMM forj = 0. A ratio g&i,&,/ uMM that is significantly greater than 
unity is physically unreasonable and j = -1 has been preferred. The program does, 
however, allow u,-,MM to exceed UMM and the “surplus probability” is taken up by 
allowing dissociations to occur whenever the sum of the intermolecular translational 
energy and the internal energies exceeds the dissociation energy. Kewley and Hornung 
found a !P2e5 dependence for the rate constant kd, for molecule-atom collisions. 
A good fit with their results is, however, obtained by retaining the T-3*6 dependence 
and setting the parameter I equal to a so that kdA = 3kd, . 

Homung [7] has supplied the density proties in the relaxation zone for three 
representative cases listed in Table I. The temperature 7715 K corresponds to Case 3, 
for which pd is approximately 120 g cm-l. Equation (15) then gives 0.00707 for the 
recombination parameter at,AA . The predicted degree of dissociation for the model 
from Eq. (12) is then 0.472 which is in good agreement with the nitrogen value 
associated with the experiments. The rotational and vibrational relaxation parameters 
have been set as gr = 0.2 and gV = 0.01. These lead to a rotational relaxation time 
of about 10 mean collision times and a vibrational relaxation time of the order of 
1000 mean collision times. The latter rate corresponds to the measured vibrational rate 
[8] for nitrogen at this temperature. 

The computed profile for Case 3 with an initial 600 simulated molecules is shown 
in Fig. 2. The assumption of no vibrational excitation or dissociation within the 
shock has led, as expected, to an initial density that is somewhat lower than the 
experimental value. The subsequent agreement between the simulated and experi- 
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TABLE I 

Flow Conditions for the Experimental Cases [71] 

Case 

1 2 3 

Pl florr) 31 19 5 

,4 63 cm-3 4.67 x 10-S 2.86 x 1O-5 7.48 x 10-O 

u1 (km SC-1) 4.80 5.60 7.31 

Tz 6) 6590 7100 7715 

PaIP1 10 11.4 14.9 

% 0.094 0.189 0.469 

6 

4 I I I 
0 0.1 0.2 

x (cm) 
0.3 

FIG. 2. Comparison of the computed and experimental relaxation zone density profiles in 
nitrogen. 

mental profiles is very satisfactory. The irregularities in the computed protie in the 
near equilibrium situation are caused by statistical scatter, since only a small number 
of dissociations and recombinations occur in this region. Between x = 1.8 and 
x = 2.8 cm, only 17 dissociations and 14 recombinations occur, while the corre- 
sponding number of nonreacting collisions is 4,965,759. This illustrates the difficulties 
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in the simulation of the reaction at a temperature that is approximately one-fifteenth 
of the characteristic temperature for dissociation. The mean degree of dissociation 
for x greater than 9.2 cm is 0.476. This is in excellent agreement with the values of 
0.472 predicted by Eq. (12) and 0.469 quoted [7] for the Case 3 experiment. A similar 
computation was made forj = 0, but this did not lead to any significant change in the 
density profile. 

Similar simulations for Cases 1 and 2 lead to equilibrium degrees of dissociation 
equal 0.092 and 0.190, respectively. These also agree well with the values of 0.093 
and 0.188 from Eq. (12), and with the experimental values quoted in Table I. Figure 2 
also presents a comparison between the computed and experimental density profiles 
for Cases 1 and 2. The agreement remains generally good, although the computed 
initial relaxation rate in Case 1 appears faster than the observed rate. For this flow, 
the initial density gradient is primarily set by the vibrational relaxation rate. It was 
found that the best curve through the experimental points requires a vibrational rate 
of approximately one-third of that actually employed. Slightly better overall agreement 
for the three cases would have been obtained with a slower vibrational rate and a 
smaller negative power law for the temperature in the dissociation rate equation (28). 
Similar comparisons with a wider range of experiments would lead to an optimum set 
of molecular parameters for simulation studies for each gas, and would hopefully 
provide physical information on the reactions at a more fundamental level than that 
available from bulk quantities such as the rate constant. 

7. CONCLUDING REMARKS 

The dissociation rate constants that have been deduced previously from shock 
relaxation zone measurements have been used to determine the molecular parameters 
associated with the molecular simulation model. These parameters are physically 
reasonable and their use in direct simulation flow computations ahs led to results 
that are in agreement with the original experiments. This has provided a test of the 
overall consistency of the simulation model, which may now be applied with some 
confidence to flows with marked translational nonequilibrium. For these .flows, 
the conventional procedure which employs the Navier-Stokes equations with coupled 
thermodynamic rate equations would not be available. 

The application of the direct simulation method to a problem involving marked 
translational nonequilibrium would generally present a less severe computational 
problem than the shock relaxation problem that has been treated here. For example, 
consider a meteor entry problem involving the hypervelocity flow of a diatomic gas 
past a particle with dimensions comparable with the mean free path. The ratio of the 
dissociative collision rate to the nonreacting collision rate would be much more 
favorable, while recombinations would be so unlikely that they could be neglected 
completely. A small number of ionizing collisions could be dealt with by including an 
additional reaction cross section similar to thta already employed for dissociation. 

The calculations reported were carried out on a Digital Equipment PDP 11/40 
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system. A total of more than 100 million collisions were computed at a rate exceeding 
250,000 per hr. The machine is run for 24 hr a day, 7 days a week without an operator 
so that the total task was equivalent to 2 week’s use of a system with a total initial 
cost of the order of $35,000. The same computing task would have required approxi- 
mately 25 hr of CP time on a CDC 6600. This illustrates the cost effectiveness of a 
dedicated minicomputer for this type of calculation. 
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